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Abstract

Our learning by teaching environment has students take on
the role and responsibilities of a teacher to a virtual student
named Betty. The environment is structured so that success-
fully instructing their teachable agent requires the students to
learn and understand science topics for themselves. This pro-
cess is supported by adaptive scaffolding and feedback from
the system. The feedback is instantiated through the inter-
actions with the teachable agent and a mentor agent, named
Mr. Davis. This paper provides an overview of two studies
that were conducted with 5th grade science students and a
description of the analysis techniques that we have developed
for interpreting students’ activities in this learning environ-
ment.

1 Introduction
Cognitive scientists have established that metacognition and
self-regulation are important components for developing
effective learning in the classroom and beyond (Zimmer-
man 2001). Researchers (e.g., (Zimmerman, Bandura, and
Martinez-Pons 1992; Pintrich 2000)) have demonstrated that
students’ SRL capabilities can play a significant role in high
school academic achievement. (Brown and Palincsar 1989)
have demonstrated that younger students can acquire and ap-
ply metacognitive skills, such as planning and monitoring
through instruction. However, students in typical classrooms
are rarely provided opportunities to learn and exercise these
strategies (Paris and Paris 2001).

Our research team has been developing computer-based-
learning environments that utilize the learning-by-teaching
approach to instruction in order to foster students acquisition
of knowledge and development of sophisticated metacogni-
tive strategies. The system embodies the social constructive
learning framework and provides students with opportuni-
ties for self-directed, open-ended learning in the domains
of science and mathematics (Biswas et al. 2005). In the
system, students engage in the iterative process of reading
and building causal concept maps for science topics, such
as ecology and thermoregulation. The environment is struc-
tured so that successfully instructing their teachable agent
(“Betty”) requires the students to learn and understand the
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topic for themselves. Our previous work has shown that stu-
dents’ find the task of teaching and interacting with Betty
to be motivating, and it also helps them enhance their own
learning (Chase et al. 2009; Schwartz et al. 2009). The
teachable agent’s performance is a function of how well it
has been taught by the student, which provides the student
with a less threatening way of assessing their own under-
standing and areas of confusion (e.g., “Ugh, Betty is so
stupid, now I’ve got to figure out another way to help her
learn this stuff.”). Based upon the students level of progress
and pattern of activities, the system triggers responses from
Betty or Mr. Davis at appropriate times to provide the stu-
dent with guidance on problem-solving and metacognitive
strategies. As a result, the students are more likely to both
increase their knowledge of the specific domain content and
develop more sophisticated problem-solving and metacog-
nitive strategies, which in turn helps their preparation for
future learning (Bransford and Schwartz 1999).

This paper presents analyses from two studies that were
conducted in middle school science classrooms, in which
students taught their agent about complex science topics.
One of our goals was to determine the degree to which the
agents metacognitive and SRL prompts could help improve
student learning. Within this framework, we have developed
methods to identify and interpret students’ learning strate-
gies based on their activity traces on the system. In addi-
tion, we report the results of a second study to determine
students’ acceptance of the strategies discussed by the two
agents, and how the feedback provided by the agents influ-
enced their subsequent learning activities.

2 Measuring Self-Regulated Learning
To effectively design, test, and refine a system promot-
ing SRL skills requires the ability to identify and mea-
sure metacognitive processes. The traditional approach to
measuring students’ self-regulated learning (SRL) has been
through the use of self-report questionnaires (e.g., (Pintrich
et al. 1993; Weinstein, Schulte, and Palmer 1987)). The
underlying assumption in these questionnaires is that self-
regulation is an aptitude that students possess. For exam-
ple, the questionnaire items might attempt to assess stu-
dents’ inclination to elaborate as they read a passage, or
to determine their approach to managing available time re-
sources (Perry and Winne 2006; Zimmerman 2008). This



approach has been useful, as the self-report questionnaires
have been shown to be good predictors of students’ stan-
dard achievement test scores and they correlate well with
achievement levels. However, Hadwin and others (Azevedo
and Witherspoon 2009; Hadwin et al. 2007) have argued
that while the questionnaires provide valuable information
about the learners’ self-perceptions, they fail to capture the
dynamic and adaptive nature of SRL as students are involved
in learning, knowledge-building, and problem-solving tasks.

Increasingly, researchers have begun to utilize trace
methodologies in order to examine the complex temporal
patterns of self-regulated learning (Azevedo and Wither-
spoon 2009; Biswas et al. 2010; Hadwin et al. 2007;
Zimmerman 2008). Perhaps the most common type of
data collected, and the focus of this chapter, are com-
puter logs, which can record every action that the stu-
dent performs within a computer-based learning environ-
ment. More recently, trace data is being supplemented with
other sources of data, such as concurrent verbal think-alouds
(e.g., (Azevedo and Witherspoon 2009)). Combining trace
and think-aloud protocols provides more insight into the stu-
dents’ thought processes that govern the use of strategies.
Furthermore, they can be used to validate the results of the
trace data analysis.

3 Betty’s Brain and Self-Regulated Learning
The Betty’s Brain system, illustrated in Figure 1, imple-
ments the learning-by-teaching paradigm to help middle
school students develop cognitive and metacognitive skills
in science and mathematics domains (Biswas et al. 2005).
The system supports five primary types of activities: (1)
Read: hypermedia resources that contain all of the science
information needed for students to build their concept maps.
(2) Edit: students explicitly teach Betty by creating a con-
cept map with the nodes being the relevant science concepts,
and the links represent causal relations between the nodes.
(3) Query: check their teaching by asking Betty questions,
which she answers using causal reasoning through chains of
links. (4) Explain: probe Betty’s reasoning, by asking her to
explain her answer to a query; and (5) Quiz: students assess
how well they have taught Betty by having her take a quiz,
which is a set of questions chosen by the Mentor agent.

Figure 2 illustrates our conceptual cogni-
tive/metacognitive model that we employ in the design
of the Betty’s Brain system. For knowledge construction
in the Betty’s Brain system (i.e., building causal concept
maps), we identify two key types of self-regulation strate-
gies: (i) information seeking, in which students study and
search available resources in order to gain missing domain
information or remediate existing knowledge, and (ii)
information structuring, in which students structure the
information by causal and taxonomic relationships to build
and revise their concept maps. Information seeking involves
strategies that focus on effective use of the resources in
the system, whereas information structuring focuses on
strategies for construction and revision of the concept map.
The model also posits two types of monitoring strategies:
(i) checking, where students use the query or the quiz
features to test the correctness of their concept map, and

Figure 1: Betty’s Brain system with query window

(ii) probing, a stronger monitoring strategy, where students
systematically analyze their map in greater detail, by asking
for explanations to follow the causal reasoning steps and
locate potential errors in the maps. Effective guidance (i.e.,
relevant and timely feedback) based on this SRL model
makes students aware and helps them develop good learning
strategies. Betty’s persona incorporates metacognitive
awareness that she conveys to the students at appropriate
times to help them develop and apply monitoring and
self-regulation strategies (Wagster et al. 2007). Mr. Davis,
the mentor, provides help in the form of suggested behavior
patterns linked to effective SRL strategies (e.g., “if you are
not sure, check the resources to see if Betty is answering her
questions correctly.”). In other words, the agent feedback
is triggered by students’ activity patterns and linked to
strategies for knowledge construction and monitoring
implied by our model.

Figure 2: Our model of SRL strategies linked to activities in
Betty’s Brain



4 Experimental Studies
We have conducted several classroom studies with the teach-
able agent system in middle school science classrooms. At
the beginning of each study, the science teacher introduces
students to the topic during regular classroom instruction.
The intervention phase starts with an overview of causal
relations and causal mapping during a 45-minute class pe-
riod. This is followed by a hands-on training session with
the system the next day. Over the next 4 or 5 days, the stu-
dents teach Betty by building up a causal concept map for
the science topic, which represents what Betty knows To as-
sess students’ acquisition of science domain knowledge and
causal reasoning skills, we employ two measures. The first
was pretest to posttest gain score. These tests contain a mix
of content-related multiple choice and free response items
(Biswas et al. 2010) that were administered before the stu-
dents were introduced to causal reasoning and at the end of
the intervention, respectively. The second measure exam-
ined students’ final maps, in terms of completeness and ac-
curacy

We analyze the results from two classroom studies. The
first study compared the students use of self regulated learn-
ing (SRL) strategies as they used the system. We had two
questions: (1) Would students who taught an agent use more
SRL strategies in their learning and teaching tasks? and (2)
Would students who received SRL feedback from the agents
use more sophisticated SRL strategies than students who
did not? The second study used verbal protocol analysis to
study the effectiveness of different kinds of SRL strategies,
and also compared if the feedback provided by one agent
was more effective than the feedback provided by the other
agent.

Study 1: Modeling student’s SRL strategies
Our participants were 56 students in 5th grade science class-
rooms. Students were assigned to one of three conditions
using stratified random assignment based on standardized
test scores. All students created river ecosystem concept
maps over five 45-minute sessions. Two of the conditions
(i) the learning-by-teaching (LBT) group, and (ii) the self-
regulated learning-by-teaching (SRL) group created their
map to teach Betty so that she could pass a test on her
own. The third group, the intelligent coaching system (ICS)
group, provided the control condition and was told to create
the map to learn for themselves. They could also query their
map and ask for explanations, but in this case, it was Mr.
Davis, and not Betty, who responded to them.

We adopt a state-based representation, i.e., a hidden
Markov model (HMM) (Rabiner 1989), to analyze stu-
dent learning behaviors. The states in a HMM are hidden,
meaning that they cannot be directly observed in the en-
vironment/system. Instead, they produce output (e.g., stu-
dent activities in the Betty’s Brain system) that can be ob-
served. By providing a concise representation of student
learning strategies and behaviors, HMMs have the potential
of providing a higher-level view of how students approach
their learning tasks (e.g., what strategies they use and how
they switch between strategies) (Jeong and Biswas 2008;

Biswas et al. 2010). We have developed an algorithm de-
signed to generate HMMs from a set of student activity se-
quences (Li and Biswas 2002; Jeong and Biswas 2008). The
first step in the analysis is to extract each students’ activity
sequences over the period of the study from the log files.
Each element of the activity sequence is labeled as one of
the five primary activity types: READ (read the resources),
QUER (query Betty on a portion of the map), EXPL (ask
Betty to explain her answer to a query), QUIZ (ask Betty
to take a quiz), and EDIT (add, edit, or delete concepts and
links in the concept map).

Although all students had access to the full set of actions,
not all of them used them effectively. We addressed this is-
sue by developing a relevance score that took into account
how much the current action could be linked to other recent
actions. Each student action was assigned a relevance score
that depended on the number of relevant previous actions
within a pre-specified window. This score provides a mea-
sure of informedness for knowledge construction activities
and, similarly, a measure of diagnosticity for monitoring ac-
tivities. Overall, the relevance score provides a rough mea-
sure of strategy consistency or coherence over a sequence of
actions. The relevance score is employed in HMM genera-
tion by refining the labeling of student activities. Each of the
actions in an activity sequence is assigned a label, H (high)
or L (low), based on its relevance score, in order to maintain
the context and relevance information of the actions in the
sequence. For example, a QUER-H activity implies that the
query the student asked is related to other activities recently
performed, while a QUER-L implies that the query activity
is unrelated to the students’ recent activities.

Figure 3: HMMs derived from student activity sequences

The HMM models derived for the ICS, LBT, and SRL
groups are shown in Figure 3. The possible transitions be-
tween states are shown as arrows, and the transition proba-
bilities are expressed as percentages. For example, the ICS
behavior model indicates that there is an 84% likelihood that
a student who just performed an applied reading action will
next perform another applied reading action, but there is a
13% chance that the student will perform an informed edit-
ing action next. States in the models are named based on
an interpretation of their outputs (activities), which are de-
scribed in greater detail in (Biswas et al. 2010). The models
for the ICS and LBT groups each have three states, but the
activities associated with some of those states differ signif-
icantly. Further, the derived model for the SRL group has



five states instead of three and shows some interesting dif-
ferences in the set of actions associated with those states.

We used the activities associated with a state to categorize
the states of the three derived HMM models. This produced
seven different states that are described below.

1. Applied reading: students are primarily engaged in read-
ing the resources and applying the knowledge gained
from reading by editing their maps. This state combines
information-seeking and information structuring.

2. Uninformed editing: students are primarily making unin-
formed changes to their map, indicating the use of subop-
timal trial-and-error or guessing strategies for information
structuring.

3. Informed editing: students are primarily making informed
changes to their map (information structuring) based on
relevant queries or quiz questions.

4. Uninformed and informed editing: students are primarily
making changes to their map, some of which are based on
relevant queries or quizzes.

5. Checking - students are querying and quizzing Betty to
check the correctness of their concept maps. However,
the use of queries and quizzes is unfocused.

6. Probing - students combine querying and quizzing with
the explanation feature, which illustrates the chain of links
that were followed to generate an answer to a question.
Further, the queries, explanations, and quizzes are fo-
cused on a particular area of the map, and the results in-
form map editing. This combination implies a deeper, fo-
cused monitoring strategy.

7. Transitional probing - students perform activities similar
to the probing state, but generally with lower relevance
scores, suggesting that they may be transitioning to prob-
ing a different area of the concept map.

As discussed above, each of the interpreted states can be
mapped onto one or more knowledge construction and mon-
itoring strategies outlined in our conceptual SRL model that
was illustrated in Figure 2. The models provide evidence
that the SRL condition uses more effective monitoring and
knowledge construction strategies than the LBT and ICS
conditions.

We probed further to determine the prevalence of indi-
vidual states suggested by a generated HMM. To do this,
we calculate the proportion of expected state occurrences by
condition in Table 1. This measure employs state transition
probabilities and average activity sequence lengths to calcu-
late an expected value for the proportion of individual state
occurrences. Although states corresponding to knowledge
construction behaviors account for a significant percentage
of behaviors in all groups, the HMMs for LBT and SRL
groups also show use of monitoring strategies (10% for LBT
and 49% for SRL). The SRL HMM also includes more states
suggesting a greater number (and possibly greater complex-
ity) in the types of strategies employed. Further, the activ-
ities involved in these additional states suggest use of the
more advanced monitoring behavior of probing that is ab-
sent from the ICS and LBT HMMs.

Behaviors
ICS LBT SRL

Prop. (%) Prop. (%) Prop. (%)
Applied Reading 33 30 17

Uninformed Editing 36 - -
Uninformed & Informed Editing - 60 34

Informed Editing 31 - -
Checking - 10 13

Transitional Probing - - 7
Probing - - 29

Table 1: Proportion of expected state occurrences by condi-
tion

The results of the HMM analysis identify differences in
strategies employed by the different groups of students, but
it does not directly indicate how this affected student learn-
ing. Table 2 shows the learning gains measured by tests
and map scores for each condition in the study. Results
show that the two groups that taught Betty (LBT and SRL)
outperformed the ICS group on gains in both test and map
scores with statistically-significant performance differences
between the SRL and ICS groups. The gain score differ-
ences between conditions for the multiple choice test ques-
tions were not statistically significant. However, for the free
response questions, the SRL group showed greater gains
than the ICS group (p < 0.1 and a relatively large effect size
of d̂ = 0.72). For the gain in correct map concepts, the SRL
group outperformed the ICS group (p < 0.05, d̂ = 0.81), and
the LBT group (p < 0.01, d̂ = 1.05). Similarly, for the gain
in correct map links, the SRL group again outperformed the
ICS and LBT groups (p < 0.05, d̂ = 0.97 and p < 0.1, d̂ =
0.72, respectively).

Gain Score
Conditions

ICS LBT SRL
Multiple Choice 0.4 (2.4) 1.1 (3.1) 0.4 (1.5)
Free Response 1.9 (3.0) 4.3 (3.2) 4.8 (4.7)
Map Concepts 8.1 (2.4) 7.3 (2.7) 10.4 (3.1)

Map Links 12.2 (3.8) 12.7 (5.3) 16.2 (4.4)

Table 2: Mean pre-to-post test and concept map score gains

It is clear that the students who taught Betty outperformed
the other students both in learning gains and the use of more
effective strategies. The fact that the SRL group had higher
free response and map score gains than the LBT group fur-
ther supports the results of the HMM analysis that the SRL
feedback led to use of better learning strategies and better
performance in learning tasks.

Study 2: Comparing the Mentor and Teachable
Agent Feedback
In order to assess the effectiveness of different forms of feed-
back in our system, we conducted a study, which included
a talk-aloud protocol to determine students’ reactions to the
agent feedback. The study was conducted in three 5th grade
science classrooms in the same school as study 11. All stu-

1Study 1 and study 2 were conducted in different years.



dents worked on a newer version of the SRL system from
study 1, where the feedback from the two agents was better
organized into categories. Students worked in pairs chosen
by the teachers to ensure that the paired students were at
similar academic levels and had compatible personalities.

Students worked on the topic of pollution in river ecosys-
tems for three 45 minute periods. We recorded student con-
versations and interactions using webcams. After the study
was concluded, two coders reviewed all of the video data
and recorded students responses to the feedback. For every
instance in which the TA or the mentor provided feedback,
the coders noted whether the students’ subsequent discus-
sion affirmed, dismissed, or deferred the agent’s feedback.
Inter-rater reliability for the coding scheme was over 85%,
and the results are summarized in Table 3.

Students explicitly referenced the feedback from Betty
and Mr. Davis about a third of the time. In these discus-
sions, they sometimes affirmed (e.g., “We should do that” or
“We need to read more” responding to feedback suggesting
the students read the resources), sometimes dismissed (e.g.,
“No, I don’t want to read” or “Let’s just keep giving her
quizzes” responding to feedback suggesting students teach
Betty more between giving her quizzes), and occasionally
deferred (e.g., “Hold on, we will get to that in a second”)
agent feedback2. Table 3 shows the differences between
students in affirming or dismissed feedback from the two
agents. Students were more likely to affirm feedback from
Mr. Davis, and were more likely to dismiss feedback from
Betty. This suggests that students paid less attention to the
self-reflective feedback from Betty, who was treated like a
peer or even someone who did not seem to know as much
as the students, than they did to the more explicit, strategy-
oriented feedback from Mr. Davis, who had the status of an
authority figure.

Agent N Referenced Affirmed Dismissed Deferred
Betty 649 34% 6% 16% 2%

Mr. Davis 275 30% 18% 10% 2%

Table 3: Student verbal response to agent feedback

To understand how students’ verbal responses related to
learning, we analyzed the study results for the two metacog-
nitive categories of feedback from each agent: (1) knowl-
edge construction strategies, and (2) monitoring strategies.
Students who more frequently affirmed the knowledge con-
struction strategy feedback from either the TA or the mentor
had higher map scores. Students who dismissed either the
knowledge construction or the monitoring feedback from
either agent had lower map scores (negative correlations).
However, when the students affirmed the monitoring feed-
back, the results were surprising. Affirming Mr. Davis’s
monitoring feedback showed a positive correlation with map
score, but affirming Betty’s monitoring feedback resulted
in a negative correlation with map score. Overall the stu-
dents seemed to affirm the knowledge construction feed-

2Some student discussions that referenced the feedback neither
affirmed, dismissed, or deferred the feedback.

back more, and affirming this feedback implied higher map
scores.

To determine whether the students verbal responses to
feedback matched their expected actions in the system, we
analyzed student actions immediately following each agent
feedback statement. Table 4 reports for both Betty and Mr.
Davis (1) the average number of feedback events by cate-
gory per student, (2) the average proportion of subsequent
activities that matched the actions advised by the feedback
(using a window size of 3 actions3), and (3) the correlation
between the percentage of matched actions and the students’
final map scores.

Feedback Category→ Knowledge
Agent ↓ Measures Construction Monitoring

Betty
Feedback Events 5.77 13.08

Action Match 28.2% 0.5%
Map score Correlation 0.52a −0.41

Mr. Davis
Feedback Events 2.46 5.54

Action Match 24.02% 33.0%
Map score Correlation 0.11 0.26

Table 4: Action Response to Feedback and Corresponding
Map Score Correlations (a p < .1)

Overall, the correlation between percentage of matching
actions and the students’ final map scores was positive (0.34
for Betty and 0.36 for the Mentor). More detailed analysis
by category of metacognitive feedback, showed a positive
correlation between students’ final map scores and their fol-
lowing Betty’s and Mr. Davis’s advice on knowledge con-
struction feedback. The more the students subsequent ac-
tions matched the feedback the better was their map scores,
as measured by the correlations: 0.52 for following Betty’s
and 0.11 for matching the Mentor’s knowledge construction
advice. These results differ from the verbal responses to
feedback, where students affirmed Mr. Davis’s knowledge
construction feedback more than they did Betty’s, and the
corresponding correlations with map scores was also higher
for the mentor (0.37 versus 0.2). On the other hand, for mon-
itoring feedback Mr. Davis was more effective than Betty.
Though the relative number of Betty monitoring feedback
events was high compared to Mr. Davis’s (13.1 to 5.5), stu-
dent actions after Betty feedback showed a poor match to
the feedback content (about 0.5%). For the mentor feedback
the match was at 33%. Combining this information with the
verbal response results indicates that the students were more
dismissive of Betty’s monitoring feedback, and at the same
time they rarely followed up with activities that matched the
feedback content. In addition, the correlation between the
activity match percentage and students’ map scores was neg-
ative, implying those who affirmed Betty’s monitoring feed-
back or tried to apply it ended up with lower map scores. On
the other hand, Mr. Davis’s monitoring feedback had more
affirmations and there were more attempts to follow his sug-
gestion, and also resulted in higher map scores (though the

3We employed a variety of different window sizes, and all of
them produced similar results.



correlations were not statistically significant.)

5 Discussion and Conclusions
The Betty’s Brain system is designed to leverage the benefits
of learning by teaching and causal reasoning to help students
learn science. The teaching interactions and agent feedback
support students’ engagement and promote the development
and use of educationally-productive cognitive and metacog-
nitive processes. In study 1, students who utilized learning
by teaching versions of our system (i.e., the LBT and SRL
groups) constructed better concept maps than students who
used the non-teaching ICS version of the system. Moreover,
students’ performance was strongest when the system ex-
plicitly supported their use of self-regulated learning strate-
gies by having Betty model and prompt for such behaviors,
and having the mentor provide additional strategy-oriented
advice.

Our approach to analyzing students activity sequences us-
ing hidden Markov models produced good results. We were
able to characterize students activity patterns into a number
of (good and bad) knowledge construction and monitoring
strategies. The interpretation of student behaviors with the
HMMs also matched the SRL feedback model we imple-
mented in the Betty’s Brain system. Although the HMM
analysis illustrated the effectiveness of providing metacog-
nitive feedback in the Betty’s Brain system, it did not in-
dicate which agent or types of feedback were most effec-
tive in promoting SRL behaviors. Our second study that
included a talk-aloud protocol showed students’ were more
receptive to the explicit, strategy-oriented advice from the
mentor agent, as opposed to the self-reflective, but less ex-
plicit, feedback from the teachable agent. Further, students
were more likely to affirm the knowledge construction feed-
back from each agent than the monitoring feedback. This
analysis also showed a positive correlation between affirm-
ing feedback and students’ map scores, except in the case of
Betty’s monitoring feedback. Additional analysis of student
responses to feedback, in terms of actions taken following
feedback events, showed a similar differentiation between
knowledge construction and monitoring feedback.

Since students appeared to be more receptive to the ex-
plicitly strategy-oriented feedback from the more authorita-
tive agent, i.e., the mentor, it may be especially fruitful to
improve the mentor agent’s feedback. We intend to continue
analyzing the data from this and future studies in order to
better understand how specific phrasing and different forms
of metacognitive feedback affect student behavior. We have
also been conducting studies to determine how to make the
timing and content of strategy feedback more relevant to the
student’s current activities on the system.
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